CASTEPを用いたELNES/XANESの第一原理計算
(本マニュアルは古いバージョンです.最新バージョンは

 

東京大学・生産技術研究所・溝口照康

[研究室HP]

ここでは第一原理擬ポテンシャル法であるCASTEPコードを用いたELNES/XANESの第一原理計算法を説明します.特に,アクセルリス社(現 BIOVIA)のMaterials StudioというGUIを用いた手法について説明します.

 

ここでは酸化マグネシウム(MgO)のO-K端を計算してみます.

 

1.Materials Studio上でモデルを作製する.

 File-> Importを行い,「Structures」のショートカットに行き,「Metal-oxides」の中のMgO.msiを呼び出します.

 

 

上図では酸素は赤色Mgは緑色となっています.

上のようなunit cellのままでも問題ありませんが,岩塩型構造はprimitive cellにできるので,primitive cellにします.

 

 

結果的にMg1O12原子のprimitive cellができます.基底状態のバンド構造や状態密度(DOS)の場合はprimitive cellを用いて,k点を増やした計算を行います.しかし,ELNES/XANES計算で導入する内殻空孔をprimitive cellでは正確に計算できません.

 

たとえば酸素のK端を計算したい場合は,セルの中にある酸素の一つの1s軌道にホールを導入することになります.一方で,内殻空孔は電子状態に影響を及ぼします.バンド計算では計算するセルを無限に拡張する(周期的境界条件)ため,隣のセルの中にある内殻空孔を導入した酸素間に相互作用が発生します(下模式図).

 

そこで,primitive cellunit cellのような小さなセルではなく,それらを拡張したセル(スーパーセル)を用い,内殻空孔を導入した原子間の相互作用を小さくしまする必要があります(上図右側).そのために,MgOprimitive cell2原子ですが,それを下のように拡張します.

 

 

例えば2×2×2倍することで以下のような16原子のスーパーセルが作製されます.

 

 

今回はこの16原子のスーパーセルを用います.また,このsupercellにした時点で結晶の対称性はP1(対称性なし)に落ちます.

 

ただし内殻空孔を導入した原子間の相互作用を十分に小さくするためには10Å近く離す必要があることが分かっています.なので,MgOの場合はprimitive cell4×4×4倍した以下のような128原子のスーパーセルを用いるべきです.(128原子の計算時間は4コアで2,30分弱ほどです).

 

 

 

 

 

2.内殻空孔を導入する

今回は酸素のK端を計算するので,酸素を選びます.今時点ではスーパーセル内のどの酸素を選んでも問題ありません.

 

 

Line」表示だと分かりにくいので,Display styleball and stickにし,酸素を1つ選びます.ここでは上図左下の酸素(黄色)を選択してます.この酸素に内殻空孔を導入するために,選択したまま Modify-> Electronic Configurationを選択します.

 

 

出てきたWindowの一番右のタブ「Core hole」を選びます.

 

通常は基底状態なのでShellの欄がNoneとなってます.酸素のK端を計算するために1score-holeを導入します.

 

1sを選択したらwindowを閉じます.モデルをみても,見た目では内殻空孔が導入されているのか分かりません.確認するためには,Edit->Atom Selectionを選択し,

 

 

Contain Core Holeを選択して,SelectするとCore Holeを導入した原子が選択されます.わかりやすくするために,内殻空孔を導入した原子をDisplay styleを使って,Ballのサイズを変えておくと便利です.

 

 

次に,Material Studiosupercellをつくると対称性がP1に落ちます.P1のままで計算するのは非効率なので,このセルに対称性を与えます.

 

 

 

デフォルトの設定でsymmetryを探すと,元素の種類だけで対称性が検索されてしまいます.今回は内殻空孔を導入しており,内殻空孔を導入した励起状態の酸素と,内殻空孔を含まない基底状態の酸素とは区別すべきです.そのためにFind symmetrywindowの右のタブのOptionsを選択し,CoreShellWithHoleを選択しておきます.

 

 

次に,Findのタブにもどり,Find symmetryをします.

 

 

そうすると今回Fm-3mが見つかります.次にImpose symmetryします.

 

 

その結果,上図のようなUnit cell表現のスーパーセルが作製されます.Primitive cell2×2×2の計算するために再びBuild->Symmetry->Primitive Cellを実行します.

 

 

 

今回は以下のようなセルになりました.つまり,内殻空孔を導入した原子(大きな赤丸)がずれて,スーパーセルの端になっていることが分かります.これは,対称性を上げるために,内殻空孔を導入した原子を対称性の高いサイトに移動させたためです.

 

 

これで,計算を実行するためのセルが完成しました.

 

3.CASTEPを実行する

 次にツールバーからCASTEPのアイコンを選択し,Calculationを選択します.

 

CASTEP CalculationWindowが立ち上がります.各タブを説明します.まずSet upタブについて,

 

 

まずはMgOMetalではないのでMetalのチェックを外します.次に重要なことですが,Charge-1にします.これは,Core holeがスーパーセルにある場合にMaterial Studioが勝手にセルのチャージを+1にするという“お節介”を正すためです.このお節介は,マイナス電荷の電子が内殻から抜けて,セルとしてプラスになったとMaterial Studioが勝手に判断するためです.しかし,ELNES/XANESが反映しているのは内殻電子が伝導帯に入っている電子状態です.つまり,電子の位置が内殻軌道から伝導帯に移動しただけで,チャージとしてはニュートラルのはずです.これはMaterial StudioCASTEPのみの問題で,著者がこれまで行ってきたすべての計算(Wien2kOLCAO,ソース版CASTEPDV-Xα等)ではすべてニュートラルなセルで計算しています.

 

そのようなMaterial Studioの“お節介”を正すためにCharge-1にしておきます.そうするとMaterial Studioのお節介(+1)と入力した-1とが打ち消し合い,結果的にニュートラルな計算を行ってくれます.

 

次に,Electronicのタブに行きます.

 

まず,左下の Use core holeを選択します.つぎに,core-holeを導入するためにはPseudopotentialsの種類が On the flyである必要があります.On the flyでは「その場で」pseudopotentialを作成するということです.On the flyで内殻空孔を導入した擬ポテンシャル(励起擬ポテンシャル)を作製し,内殻空孔を導入すべき原子には励起擬ポテンシャルを適用し,他の原子には基底状態の擬ポテンシャルを適用します.

このパネルにEnergy cutoffk-pointsの設定もできます.ELNES/XANES計算の場合,Energy cutoffk-pointsは特に理論遷移エネルギーにきいてきます.いくつかの条件(たとえばMedium, FineUltra-fine)で計算して比較し,計算の精度を確かめる必要があります.

 

次にPropertiesタブに行きます.

 

ELNES/XANESを計算するためにCore level spectroscopyを選択します.下にEnergy rangek-point setが出てきます.Energy rangeは吸収端から何eV後ろまで計算するかということです.25eVの場合は吸収端から25eVぐらい後ろまでスペクトルを得ることができます.この値を大きくすると非常に計算時間がかかりますので,無駄に高エネルギーにしないほうが良いです.

 

 k-point setはスペクトル計算におけるk点です.Electronicのタブにもk-point setがありましたが,Electronicタブの方は電子構造を計算する(SCF計算)するときのk点で,Propertiesタブの方は,SCF計算の結果をもとにスペクトルを計算するためのk点になり,k点が多いほど滑らかなスペクトルになります.今回はMediumで行います.

 

次にJob Controlタブに行きます.

 

Run in parallelは計算するPCのコア数になります.また,Runtime optimizationDefaultになってますが,これをSpeedにするとテンポラリーファイルをすべてメモリに格納してくれます.メモリを多く積んだPCであれば計算がかなり高速になります.次に,右下のMore...を選択します.そうすると以下のようなWindowがでます.

 

 

ここで,真ん中下ぐらいのRetain server filesを選択します.これは計算したファイルをすべてそのままにして,消さない,というオプションで,通常はOffになってます.これをonにする理由は,Material Studioが行う第二の“お節介”を回避するためです.その辺の説明は後にして,とりあえずこのままにして計算を実行します.元のWindowにもどり,Runを実行します.

 

4.ELNES/XANES計算結果をみる

 

 

計算が走ると,下部のJobパネルに計算の状況が出てきます(Job panelView->Exploresで表示できる).Jobを上記のように選んで右クリックを押し,Remote Viewを選択するとブラウザで以下のような計算ファイルのリストをみることができます.

 

 

たとえば,MgO.castepが計算の主な出力ファイルで,現在どれくらいSCFサイクルが進んでいるのかがリアルタイムでわかります.

これらのファイルは実際にPCの中にできており,著者の場合は

C:\ProgramData\Accelrys\Materials Studio\7.0\Gateway-x64\root_default\dsd\jobs\

の中に作成されてました.

 

しばらくすると計算が終了し,Materials studioが以下のような表示になります.

 

 

 

Corei5PC4core50秒ほどで終了しました.Retain server filesが選択されているために下部のJobパネルで実行した計算が残ってます.次に計算したELNES/XANESを表示させるために,左のProjectの計算したフォルダのしたの計算モデル(上図左上の赤丸)をダブルクリックして選択します.

 

次にCastepボタンのAnalysisを選びます(下図).

 

 

次に,内殻空孔を導入した酸素(大きな赤い酸素)を選択し,CASTEP AnalysisWindowCore level spectroscopyを選択します.

 

 

Core level spectroscopyは選択した原子のELNES/XANESを表示してくれます.TypeAbsorptionEmissionが選択でき,Calculationで,UnpolarizedPolarizedを選択することができます.ELNES/XANESAbsorptionです.また注目する原子の電子構造に異方性がある場合,スペクトルに方位依存性があらわれます.異方性がある場合は,Polarizedにして,100010001にしてViewすると各方位に対するスペクトルを得ることができます.MgOの場合,酸素もMgにも異方性は無いのでUnpolarizedで行います.

 

また,Typeの右のほうにあるMoreを選択すると以下のようなWindowが立ち上がります.

 

 

上部のInstrumental smearingCore level broadeningを変えることで計算のブロードニングを変えることができる.Instrumental smearingGaussian関数,Core level broadeningLorentzianであり,二つとも指定している場合はVoigt関数になります.今回はデフォルトの設定のままViewを選択します.

 

そうすると以下のようなスペクトルが得られました.

 

 

ここで注目するところの一つが横軸で,ゼロからピークが立ち上がっていることが分かります.これは遷移した電子が伝導帯下端にいることを示してます(計算がきちんとできているということです).次に縦軸上(図左上)の値をみてみます.1.0になっていることが分かります.これがMaterial Studioの二つ目の“お節介”で,Material Studioでは計算したスペクトルをすべてノーマライズしてしまってます.このことは,結晶内に異なる原子サイトがある場合に問題が出てきます.結晶内に同種の元素で結晶学的に異なるサイトが複数個ある場合,各サイトでスペクトルを計算し,足し合わせる必要があります.その際にスペクトル強度をノーマライズしてしまうと正確に足し合わせることができなくなります.

 

そこで,サーバーに残しておいた計算ファイルが役に立ちます.

 

著者のPCでは

 

C:\ProgramData\Accelrys\Materials Studio\7.0\Gateway-x64\root_default\dsd\jobs\

 

下にデータが残されてます.

フォルダの中身は以下のようになってます.

 

 

ここで,MgO.cellが計算の入力ファイルで,結晶構造やk点,On-the-flyStringなどの情報が含まれてます(ちなみにMgO.paramが計算の条件ファイルでcut off energy等の条件が書かれてます).中身をテキストエディターなどであけると以下のようになってます.

 

 

一番上には結晶格子に関する3×3の行列があり,ここから格子定数(a, b, c, α,β,γ)が分かります.中ごろには各サイトの位置と元素種に関する情報があります.ここで,酸素(O)がO:1O:2に分かれていることが分かります.これは,酸素の一つが内殻空孔を含む“励起状態酸素”であるのに対し,残りの酸素が“基底状態酸素”になります.励起状態酸素は一個のはずなので,O:1がそれにあたることが分かります.

 

さらに,MgO_EELS.elnesELNES/XANESの計算結果のテキストデータです.中身をみると以下のようになってます.

 

 

 

 

上図の上部に1,2,3とありますが,それぞれ

1.#Atomic species: 元素種のことで,上述のMgO.cellから今回3種類(O:1, O:2, Mg:1)が存在しており,その一番目つまり,O:1ということ

 

2.Number of ions in species1.の元素種の中の何番目かを示しており,O:1に属する酸素は一個のみ.O:27こあるので,7個出てくる.上図の下部では#Atomic species: 2 Number of ions in species: 7の部分を示している.

 

3.# Core orbitalsその元素種の内殻の種類.O:1では1sに内殻空孔を導入して,内殻は1sのみしかないので“1s”しか出ないのでシンプル.しかし,Mgになると1s, 2s, 2px, 2py, 2pzが出力されている.

 

今回O:11s軌道にしか内殻空孔を導入してないので,他のO:2Mg:1はすべて無視して,

 

1.#Atomic species:=1

2.Number of ions in species=1

3.# Core orbitals1s

 

の部分だけをとりだし(1803行ほど),Excelなどで表示させると以下のように得られます.

 

縦軸の生データが出ていることが分かります.

 

 

 

 

謝辞:ルネサステクノロジー・西藤哲史氏,アクセルリス(BIOVIAA. Chatterjee博士,Univ. College London Chris J. Pickard先生,S. P. Gao先生

 

補足:CASTEPについて

CASTEPは擬ポテンシャルを用いた第一原理バンド計算コードです.CASTEPについては以下をご参考ください.

S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson and M. C. Payne, Z. Kristallogr., 220, 567–570 (2005).